Commit 975d020a authored by wangys_biolab's avatar wangys_biolab

Initial commit

parents
# Default ignored files
/shelf/
/workspace.xml
<?xml version="1.0" encoding="UTF-8"?>
<module type="PYTHON_MODULE" version="4">
<component name="NewModuleRootManager">
<content url="file://$MODULE_DIR$" />
<orderEntry type="inheritedJdk" />
<orderEntry type="sourceFolder" forTests="false" />
</component>
<component name="PyDocumentationSettings">
<option name="format" value="PLAIN" />
<option name="myDocStringFormat" value="Plain" />
</component>
</module>
\ No newline at end of file
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="CsvFileAttributes">
<option name="attributeMap">
<map>
<entry key="D:\Wangys_data_postdoc\Effector_predictions\GAN_model\6.feature_selection\feature_selection_model.py">
<value>
<Attribute>
<option name="separator" value="," />
</Attribute>
</value>
</entry>
<entry key="D:\Wangys_data_postdoc\Effector_predictions\fungi_effector_DRLF\eFeature\src\SSA_embedding.py">
<value>
<Attribute>
<option name="separator" value="," />
</Attribute>
</value>
</entry>
<entry key="\Effector_GAN.py">
<value>
<Attribute>
<option name="separator" value="," />
</Attribute>
</value>
</entry>
<entry key="\embedding_model\get_feature.py">
<value>
<Attribute>
<option name="separator" value="," />
</Attribute>
</value>
</entry>
<entry key="\embedding_model\ifeature.py">
<value>
<Attribute>
<option name="separator" value="," />
</Attribute>
</value>
</entry>
<entry key="\embedding_model\src\SSA_embedding.py">
<value>
<Attribute>
<option name="separator" value="," />
</Attribute>
</value>
</entry>
</map>
</option>
</component>
</project>
\ No newline at end of file
<component name="InspectionProjectProfileManager">
<settings>
<option name="USE_PROJECT_PROFILE" value="false" />
<version value="1.0" />
</settings>
</component>
\ No newline at end of file
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="ProjectRootManager" version="2" project-jdk-name="Python 3.8" project-jdk-type="Python SDK" />
<component name="PyCharmProfessionalAdvertiser">
<option name="shown" value="true" />
</component>
</project>
\ No newline at end of file
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="ProjectModuleManager">
<modules>
<module fileurl="file://$PROJECT_DIR$/.idea/codes.iml" filepath="$PROJECT_DIR$/.idea/codes.iml" />
</modules>
</component>
</project>
\ No newline at end of file
import joblib
import pandas as pd
from embedding_model.get_feature import fasta,GnerateFeatures
import argparse
import time
def predict_model(inputfasta,outfile):
seq_dict,id_list,seq_list = fasta(inputfasta)
feature_sel= GnerateFeatures(id_list,seq_dict,inputfasta)
T0 = time.time()
print("Predicting...")
mlp_model_1752 = joblib.load(open('./mlp_model/mlp_gan_selection1752.pkl', 'rb'))
resultsTestingProb_gan1752 = mlp_model_1752.predict_proba(feature_sel)
resultsTesting_gan1752 = []
for indexResults in range(len(resultsTestingProb_gan1752)):
if float(resultsTestingProb_gan1752[indexResults][1]) > 0.5 or float(
resultsTestingProb_gan1752[indexResults][1]) == 0.5:
resultsTesting_gan1752.append("Fungal effector")
else:
resultsTesting_gan1752.append("non-effector")
Prob = []
for i in range(len(id_list)):
id2 = []
id2.append(str(id_list[i]))
id2.append(str(round(float(resultsTestingProb_gan1752[:,1][i]), 3)))
Prob.append(id2)
Prob_df =pd.DataFrame(Prob)
reultsTesting_gan1752_df =pd.DataFrame(resultsTesting_gan1752)
results = pd.concat([Prob_df,reultsTesting_gan1752_df], axis=1)
col = ["Sequence_ID", "Fungal effector protein possibility","Classification"]
result2 = pd.DataFrame(data=results)
result2.columns=col
result2.to_csv(outfile)
print(" ")
print("Effector-GAN completed !!!!!")
print("===============================")
print(" ")
print("it took %0.3f mins.\n" % ((time.time() - T0) / 60))
if __name__=="__main__":
parser = argparse.ArgumentParser(
'Script for predicting fungal effector proteins using deep representation learning features '
'and generative adversarial network')
parser.add_argument('-i', type=str, help='input sequences in Fasta format')
parser.add_argument('-o', type=str, help='path to saved CSV file')
args = parser.parse_args()
inputfasta= args.i
outfile = args.o
predict_model(inputfasta,outfile)
# Default ignored files
/shelf/
/workspace.xml
<?xml version="1.0" encoding="UTF-8"?>
<module type="PYTHON_MODULE" version="4">
<component name="NewModuleRootManager">
<content url="file://$MODULE_DIR$" />
<orderEntry type="inheritedJdk" />
<orderEntry type="sourceFolder" forTests="false" />
</component>
</module>
\ No newline at end of file
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="CsvFileAttributes">
<option name="attributeMap">
<map>
<entry key="\figure_tsne.py">
<value>
<Attribute>
<option name="separator" value="," />
</Attribute>
</value>
</entry>
</map>
</option>
</component>
</project>
\ No newline at end of file
<component name="InspectionProjectProfileManager">
<settings>
<option name="USE_PROJECT_PROFILE" value="false" />
<version value="1.0" />
</settings>
</component>
\ No newline at end of file
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="ProjectRootManager" version="2" project-jdk-name="Python 3.8" project-jdk-type="Python SDK" />
</project>
\ No newline at end of file
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="ProjectModuleManager">
<modules>
<module fileurl="file://$PROJECT_DIR$/.idea/TSNE.iml" filepath="$PROJECT_DIR$/.idea/TSNE.iml" />
</modules>
</component>
</project>
\ No newline at end of file
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn import manifold
fake_positive_data = "Iteration_0_Synthetic_Training_Positive.txt"
real_positive_data = "train_positive_merged_feature.csv"
path = "./real_fake_pos/"
#读取realdata
datasetOriginal_Positive1 = pd.read_csv(path+real_positive_data,index_col=0, header=0)
datasetOriginal_Positive = np.array(datasetOriginal_Positive1, dtype='float')
#读取fakedata
fakedataset_positive0 = pd.read_csv(path+fake_positive_data, index_col=None,header=None,sep=",")
fakedataset_positive1 = np.array(fakedataset_positive0, dtype='float')
fakedataset_positive = np.delete(fakedataset_positive1,-1, axis = 1)
#merge_real_fake_data
realFakeFeatures = np.vstack((datasetOriginal_Positive, fakedataset_positive))
#定义标签
label = []
for rowIndex in range(len(datasetOriginal_Positive)):
label.append(1)
for rowIndex in range(len(fakedataset_positive)):
label.append(0)
labelArray = np.asarray(label)
# tsne
tsne = manifold.TSNE(n_components=2, random_state=500)
realFake_tsne=tsne.fit_transform(realFakeFeatures.data)
plt.figure(figsize=(9, 6))
for i in range(len(labelArray)):
if labelArray[i] == 0:
s1 = plt.scatter(realFake_tsne[i, 0], realFake_tsne[i, 1], s=50, lw=3, color='r')
elif labelArray[i] == 1:
s2 = plt.scatter(realFake_tsne[i, 0], realFake_tsne[i, 1], s=100, lw=3, color='g', marker='^')
plt.rcParams['font.sans-serif']=['Times New Roman']
plt.xticks(size=15,weight='bold')
plt.yticks(size=15,weight='bold')
plt.xlabel('x-tsne',fontdict={'family' : 'Times New Roman', 'size' : 20},weight='bold')
plt.ylabel('y-tsne',fontdict={'family' : 'Times New Roman', 'size' : 20},weight='bold')
plt.title("Syn.pos. +real pos.(Iteration = 0)",fontdict={'family' : 'Times New Roman', 'size' : 20},weight='bold')
# real (green dots) and synthetic (red dots) protein feature
plt.rcParams.update({'font.size': 15})
plt.rcParams["font.weight"] = "bold"
plt.legend((s1,s2),('Synthetic positive protein samples','Real positive protein samples') ,loc = 'best')
bwith = 2 #边框宽度设置为2
ax = plt.gca()#获取边框
ax.spines['top'].set_linewidth(bwith) # 设置上‘脊梁’为红色
ax.spines['right'].set_linewidth(bwith) # 设置上‘脊梁’为无色
ax.spines['bottom'].set_linewidth(bwith)
ax.spines['left'].set_linewidth(bwith)
ax.spines['top'].set_linewidth(bwith)
ax.spines['right'].set_linewidth(bwith)
plt.savefig("pos_tsne_iter0.pdf", dpi=600,format="pdf")
plt.show()
This diff is collapsed.
This diff is collapsed.
#-----The Python implementation of a approach to conduct the CTST on synthetic and real testing protein feature samples.
#-----Please download data via http://bioinfadmin.cs.ucl.ac.uk/downloads/FFPredGAN/TestingData/.
import numpy as np
import math
import glob
import random
import torch
import torch.autograd as autograd
import torch.nn as nn
from sklearn.model_selection import LeaveOneOut
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import accuracy_score,recall_score
import os
import pandas as pd
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import cross_val_score
from sklearn.metrics import accuracy_score, precision_score, recall_score,f1_score,\
matthews_corrcoef,confusion_matrix,classification_report,roc_curve,auc
class Generator(nn.Module):
def __init__(self):
super(Generator, self).__init__()
main = nn.Sequential(
nn.Linear(258, 512),
nn.ReLU(True),
nn.Linear(512, 512),
nn.ReLU(True),
nn.Linear(512, 512),
nn.Tanh(),
nn.Linear(512, 258),
)
self.main = main
def forward(self, noise):
output = self.main(noise)
return output
ITERS = 100000
real_positive_data = "train_positive_merged_feature.csv"
accuracy_file = "CTST_synthetic_accuracy.csv"
outfile = open(accuracy_file, "w")
outfile.write('%s%s%s%s%s%s%s%s%s\n' % ("Iteration",",","accuracy",",","recall",",","precision",",","f1"))
##读取synthetic feature samples
path = "./synthetic/" #文件夹目录
files= os.listdir(path) #得到文件夹下的所有文件名称
file_syn=[]
for i in range(len(files)):
if files[i].endswith("Synthetic_Training_Positive.txt"):
file_syn.append(files[i])
#读取real feature samples
datasetOriginal_Positive = pd.read_csv(real_positive_data,index_col=0, header=0)
# datasetOriginal_Positive1 = datasetOriginal_Positive.values / 100.
# datasetOriginal_Positive_scaler = StandardScaler().fit_transform(datasetOriginal_Positive)
# datasetOriginal_Positive_scaler = StandardScaler().fit_transform(datasetOriginal_Positive)
datasetOriginal_positive2 = np.array(datasetOriginal_Positive, dtype='float')
datasetOriginal_Positive3= [line[:] for line in datasetOriginal_positive2[:]]
datasetOriginal_Positive = np.array(datasetOriginal_Positive3, dtype='float')
opt_diff_accuracy_05=0.5
opt_Epoch=0
opt_accuracy=0
for i in range(len(file_syn)):
#读取synthetic feature samples
fake_samples_positive0 = pd.read_csv(path+file_syn[i],sep=",",index_col=None, header=None)
fakedataset_positive1 = np.array(fake_samples_positive0, dtype='float')
fakedataset_positive2 = np.delete(fakedataset_positive1, -1, axis = 1)
fakedataset_positive3 = [line[:] for line in fakedataset_positive2[:]]
fakedataset_positive = np.array(fakedataset_positive3, dtype='float')
Iteration = file_syn[i].split("_")[1]
# print(i,Iteration)
#设置标签,real_feature_data设置为1,synthetic feature data设置为0
label = []
for rowIndex in range(len(datasetOriginal_Positive)):
label.append(1)
for rowIndex in range(len(fakedataset_positive)):
label.append(0)
labelArray = np.asarray(label)
#合并real和synthetic样本
realFakeFeatures = np.vstack((datasetOriginal_Positive, fakedataset_positive))
prediction_list = []
real_list = []
loo = LeaveOneOut()
loo.get_n_splits(realFakeFeatures)
for train_index, test_index in loo.split(realFakeFeatures):
X_train, X_test = realFakeFeatures[train_index], realFakeFeatures[test_index]
y_train, y_test = labelArray[train_index], labelArray[test_index]
knn = KNeighborsClassifier(n_neighbors=1).fit(X_train, y_train)
predicted_y = knn.predict(X_test)
prediction_list.append(predicted_y)
real_list.append(y_test)
accuracy = accuracy_score(real_list, prediction_list)
print(Iteration,accuracy)
recall = recall_score(real_list, prediction_list, average='weighted')
precision = precision_score(real_list, prediction_list)
f1 = f1_score(real_list, prediction_list, average='weighted')
outfile.write('%s%s%s%s%s%s%s%s%s\n' % (Iteration, ",", accuracy, ",", recall, ",", precision, ",", f1))
# coding=utf-8
import os, sys
sys.path.append(os.getcwd())
import numpy as np
import torch
import torch.autograd as autograd
import torch.nn as nn
import torch.optim as optim
torch.manual_seed(1)
import pandas as pd
input_file = "train_positive_merged_feature.csv"
positive_real_feature = pd.read_csv(input_file,index_col=0, header=0)
#设置参数
feature_len = 5797
GDIM = 512
DDIM = 86
FIXED_GENERATOR = True
LAMBDA = .1
CRITIC_ITERS = 5
BATCH_SIZE = len(positive_real_feature)
ITERS = 100000
use_cuda = False
# ###### 定义生成器 Generator #####
class Generator(nn.Module):
def __init__(self):
super(Generator, self).__init__()
main = nn.Sequential(
nn.Linear(feature_len, GDIM), # 输入特征数为2192,输出为512
nn.ReLU(True), # relu激活
nn.Linear(GDIM, GDIM), # 线性变换
nn.ReLU(True),# relu激活
nn.Linear(GDIM, GDIM), # 线性变换
nn.Tanh(), # Tanh激活使得生成数据分布在【-1,1】之间,因为输入的真实数据的经过transforms之后也是这个分布
nn.Linear(GDIM, feature_len)
)
self.main = main
def forward(self, noise, real_data):
if FIXED_GENERATOR:
return noise + real_data
else:
output = self.main(noise)
return output
# 定义判别器 #####Discriminator######使用多层网络来作为判别器
class Discriminator(nn.Module):
def __init__(self):
super(Discriminator, self).__init__()
self.fc1=nn.Linear(feature_len, DDIM)
self.relu=nn.LeakyReLU()
self.fc2=nn.Linear(DDIM, DDIM)
self.relu=nn.LeakyReLU()
self.fc3 = nn.Linear(DDIM, DDIM)
self.relu = nn.LeakyReLU()
self.fc4 = nn.Linear(DDIM, 1)
def forward(self, inputs):
out=self.fc1(inputs)
out=self.relu(out)
out=self.fc2(out)
out=self.relu(out)
out=self.fc3(out)
out=self.relu(out)
out=self.fc4(out)
hidden1 = self.relu(self.fc1(inputs))
hidden2 = self.relu(self.fc2(self.relu(self.fc1(inputs))))
hidden3 = self.relu(self.fc3(self.relu(self.fc2(self.relu(self.fc1(inputs))))))
return out.view(-1), hidden1, hidden2, hidden3
def weights_init(m):
classname = m.__class__.__name__
if classname.find('Linear') != -1:
m.weight.data.normal_(0.0, 0.02)
m.bias.data.fill_(0)
elif classname.find('BatchNorm') != -1:
m.weight.data.normal_(1.0, 0.02)
m.bias.data.fill_(0)
def inf_train_gen():
positive_real_feature = pd.read_csv(input_file, index_col=0, header=0)
dataset2 = np.array(positive_real_feature, dtype='float32')
return dataset2
def calc_gradient_penalty(netD, real_data, fake_data):
alpha = torch.rand(BATCH_SIZE, 1)
alpha = alpha.expand(real_data.size())
alpha = alpha.cuda() if use_cuda else alpha
interpolates = alpha * real_data + ((1 - alpha) * fake_data)
if use_cuda:
interpolates = interpolates.cuda()
interpolates = autograd.Variable(interpolates, requires_grad=True)
disc_interpolates, hidden_output_1, hidden_output_2, hidden_output_3 = netD(interpolates)
gradients = autograd.grad(outputs=disc_interpolates, inputs=interpolates,
grad_outputs=torch.ones(disc_interpolates.size()).cuda() if use_cuda else torch.ones(
disc_interpolates.size()),
create_graph=True, retain_graph=True, only_inputs=True)[0]
gradient_penalty = ((gradients.norm(2, dim=1) - 1) ** 2).mean() * LAMBDA
return gradient_penalty
netG = Generator()
netD = Discriminator()
netD.apply(weights_init)
netG.apply(weights_init)
if use_cuda:
netD = netD.cuda()
netG = netG.cuda()
optimizerD = optim.Adam(netD.parameters(), lr=1e-8, betas=(0.5, 0.9))
optimizerG = optim.Adam(netG.parameters(), lr=1e-8, betas=(0.5, 0.9))
one = torch.FloatTensor([1])
mone = one * -1
if use_cuda:
one = one.cuda()
mone = mone.cuda()
data = inf_train_gen()
# ##########################进入训练##判别器的判断过程#####################
for iteration in range(ITERS):
print(iteration)
for p in netD.parameters():
p.requires_grad = True
data = inf_train_gen()
real_data = torch.FloatTensor(data)
if use_cuda:
real_data = real_data.cuda()
real_data_v = autograd.Variable(real_data)
noise = torch.randn(BATCH_SIZE, feature_len)
if use_cuda:
noise = noise.cuda()
with torch.no_grad():
noisev = autograd.Variable(noise)
fake = autograd.Variable(netG(noisev, real_data_v).data)
fake_output = fake.data.cpu().numpy()
for iter_d in range(CRITIC_ITERS):
netD.zero_grad()
D_real, hidden_output_real_1, hidden_output_real_2, hidden_output_real_3 = netD(real_data_v)
D_real = D_real.mean()
# D_real.backward(mone)
D_real.backward()
noise = torch.randn(BATCH_SIZE, feature_len)
if use_cuda:
noise = noise.cuda()
with torch.no_grad():
noisev = autograd.Variable(noise)
fake = autograd.Variable(netG(noisev, real_data_v).data)
inputv = fake
D_fake, hidden_output_fake_1, hidden_output_fake_2, hidden_output_fake_3 = netD(inputv)
D_fake = D_fake.mean()
# D_fake.backward(one)
D_fake.backward()
gradient_penalty = calc_gradient_penalty(netD, real_data_v.data, fake.data)
gradient_penalty.backward()
D_cost = D_fake - D_real + gradient_penalty
Wasserstein_D = D_real - D_fake
optimizerD.step()
if iteration % 200 == 0:
fake_writer = open("./Iteration_" + str(iteration) + "_Synthetic_Training_Positive.txt", "w")
for rowIndex in range(len(fake_output)):
for columnIndex in range(len(fake_output[0])):
fake_writer.write(str(fake_output[rowIndex][columnIndex]) + ",")
fake_writer.write("\n")
fake_writer.flush()
fake_writer.close()
if not FIXED_GENERATOR:
for p in netD.parameters():
p.requires_grad = False
netG.zero_grad()
real_data = torch.Tensor(data)
if use_cuda:
real_data = real_data.cuda()
real_data_v = autograd.Variable(real_data)
noise = torch.randn(BATCH_SIZE, feature_len)
if use_cuda:
noise = noise.cuda()
noisev = autograd.Variable(noise)
fake = netG(noisev, real_data_v)
G, hidden_output_ignore_1, hidden_output_ignore_2, hidden_output_ignore_3 = netD(fake)
G = G.mean()
G.backward()
G_cost = -G
optimizerG.step()
# 保存模型
torch.save(netG.state_dict(), './generator.pth')
torch.save(netD.state_dict(), './discriminator.pth')
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
from __future__ import print_function,division
import sys
sys.path.append('./embedding_model/')
from src.SSA_embedding import SSA_Embed,BiLSTM_Embed
from src.UniRep_emb import UniRep_Embed
from ifeature import extract_feature,bind_feature
import pandas as pd
import time
from Bio import SeqIO
def fasta(data):
seq_dict = {}
id_list = []
seq_list = []
for seq_record in SeqIO.parse(data, "fasta"):
id = seq_record.id
seq = seq_record.seq
seq_dict[id] = seq
id_list.append(id)
seq_list.append(seq)
return seq_dict, id_list, seq_list
def Gnerate_iFeatures(id_list,data):
inputfile= data
outfile = "embedding_model/ifeature_vectors/"
extract_feature(inputfile, outfile)
ifeature = bind_feature(id_list,outfile)
return ifeature
def GnerateFeatures(id_list,seq_dict,data):
ifeature = Gnerate_iFeatures(id_list,data)
feature_BiLSTM = BiLSTM_Embed(seq_dict)
feature_SSA = SSA_Embed(seq_dict)
feature_Unirep = UniRep_Embed(seq_dict)
# feature_Unirep = pd.read_csv("unirep_feature.csv",index_col=0,header=0)
fusedFeature = pd.concat([feature_BiLSTM,feature_Unirep,ifeature,feature_SSA], axis=1)
fusedFeature.to_csv("fusedFeature.csv")
feature_id= pd.read_csv("./embedding_model/feature_id.csv")
LGB_ALL_K = fusedFeature[feature_id.iloc[:,0]]
LGB_ALL_K.index = fusedFeature.index
print("Feature selection completed!!!!\n\n")
return LGB_ALL_K
import subprocess
import datetime
import os
import pandas as pd
import shutil
def run_command(cmd):
print(cmd)
return_code = subprocess.call(cmd, shell=True)
if return_code != 0:
print("ERROR: [{2}] Return code {0} when running the following command: {1}".format(return_code, cmd, datetime.datetime.now()))
def write_file(filename):
file_path = os.getcwd() + '/' + filename
if os.path.exists(file_path):
shutil.rmtree(file_path)
os.mkdir(file_path)
else:
os.mkdir(file_path)
return (file_path)
def extract_feature(inputfile,outfile):
write_file(outfile)
type = ['AAC','APAAC','CKSAAGP','CKSAAP','CTDC','CTDD','CTDT','CTriad',
'DDE','DPC','GAAC','GDPC','Geary','GTPC','KSCTriad','Moran',
'NMBroto','PAAC','QSOrder','SOCNumber','TPC']
for p in type:
cmd1 = "iFeature.py" + ' --file ' + \
inputfile + \
" --type " + p + ' --out ' + './' + outfile +'feature_' + p
run_command(cmd1)
return()
def bind_feature(id_list,outfile):
PID=id_list
file_path = "./"+outfile
txt_list1 = []
for input in os.listdir(file_path):
txt_list1.append(file_path + '/' + input)
df1 = pd.read_table(txt_list1[0], low_memory=False)
for i in range(1, len(txt_list1)):
df1_i = pd.read_table(txt_list1[i], low_memory=False)
df1 = pd.merge(df1, df1_i, on='#', how='inner')
df1 = df1.iloc[:,1:]
ifeature = pd.concat([df1], axis=1)
ifeature.index= PID
ifeature.to_csv("./ifeature_merge.csv", index=True, header=True)
return ifeature
\ No newline at end of file
# A C D E F G H I K L M N P Q R S T V W Y
HUM3|1|1 0.12369791666666667 0.010416666666666666 0.048177083333333336 0.0390625 0.01953125 0.05078125 0.009114583333333334 0.0546875 0.057291666666666664 0.078125 0.00390625 0.09375 0.041666666666666664 0.08203125 0.033854166666666664 0.09244791666666667 0.0546875 0.10026041666666667 0.0 0.006510416666666667
AvrPm1a|2|1 0.06451612903225806 0.01935483870967742 0.06451612903225806 0.06451612903225806 0.06451612903225806 0.03870967741935484 0.05161290322580645 0.05806451612903226 0.09032258064516129 0.0967741935483871 0.03225806451612903 0.03225806451612903 0.03870967741935484 0.0064516129032258064 0.03870967741935484 0.0967741935483871 0.04516129032258064 0.03225806451612903 0.0064516129032258064 0.05806451612903226
AVRa10|3|1 0.05084745762711865 0.03389830508474576 0.11016949152542373 0.03389830508474576 0.06779661016949153 0.07627118644067797 0.03389830508474576 0.03389830508474576 0.03389830508474576 0.06779661016949153 0.00847457627118644 0.01694915254237288 0.025423728813559324 0.06779661016949153 0.05084745762711865 0.059322033898305086 0.06779661016949153 0.0847457627118644 0.03389830508474576 0.0423728813559322
SIX10|4|1 0.06711409395973154 0.013422818791946308 0.0738255033557047 0.0 0.04697986577181208 0.10738255033557047 0.013422818791946308 0.06040268456375839 0.03355704697986577 0.04697986577181208 0.006711409395973154 0.026845637583892617 0.06040268456375839 0.013422818791946308 0.06040268456375839 0.11409395973154363 0.087248322147651 0.10067114093959731 0.006711409395973154 0.06040268456375839
HvEC016|5|1 0.05333333333333334 0.035555555555555556 0.02666666666666667 0.013333333333333334 0.04888888888888889 0.11555555555555555 0.0044444444444444444 0.1511111111111111 0.03111111111111111 0.04888888888888889 0.017777777777777778 0.04888888888888889 0.008888888888888889 0.08 0.022222222222222223 0.09333333333333334 0.08444444444444445 0.08 0.0044444444444444444 0.03111111111111111
Six13|6|1 0.05460750853242321 0.040955631399317405 0.05460750853242321 0.07849829351535836 0.023890784982935155 0.05802047781569966 0.027303754266211604 0.030716723549488054 0.06484641638225255 0.07849829351535836 0.017064846416382253 0.04436860068259386 0.04778156996587031 0.040955631399317405 0.04778156996587031 0.07508532423208192 0.07508532423208192 0.06484641638225255 0.034129692832764506 0.040955631399317405
Cce1|7|1 0.08527131782945736 0.06976744186046512 0.06201550387596899 0.046511627906976744 0.023255813953488372 0.10077519379844961 0.031007751937984496 0.023255813953488372 0.06201550387596899 0.046511627906976744 0.015503875968992248 0.007751937984496124 0.05426356589147287 0.046511627906976744 0.03875968992248062 0.07751937984496124 0.06976744186046512 0.07751937984496124 0.03875968992248062 0.023255813953488372
SIX9|8|1 0.12280701754385964 0.05263157894736842 0.06140350877192982 0.02631578947368421 0.043859649122807015 0.06140350877192982 0.008771929824561403 0.008771929824561403 0.07017543859649122 0.08771929824561403 0.008771929824561403 0.043859649122807015 0.03508771929824561 0.043859649122807015 0.07894736842105263 0.02631578947368421 0.07894736842105263 0.043859649122807015 0.03508771929824561 0.06140350877192982
SIX12|9|1 0.08411214953271028 0.09345794392523364 0.018691588785046728 0.028037383177570093 0.009345794392523364 0.11214953271028037 0.028037383177570093 0.037383177570093455 0.056074766355140186 0.056074766355140186 0.009345794392523364 0.06542056074766354 0.037383177570093455 0.056074766355140186 0.009345794392523364 0.102803738317757 0.04672897196261682 0.09345794392523364 0.028037383177570093 0.028037383177570093
Six14|10|1 0.03409090909090909 0.06818181818181818 0.011363636363636364 0.03409090909090909 0.045454545454545456 0.125 0.011363636363636364 0.056818181818181816 0.022727272727272728 0.07954545454545454 0.03409090909090909 0.07954545454545454 0.056818181818181816 0.022727272727272728 0.07954545454545454 0.125 0.056818181818181816 0.045454545454545456 0.0 0.011363636363636364
AvrSr27|11|1 0.041666666666666664 0.10416666666666667 0.006944444444444444 0.034722222222222224 0.041666666666666664 0.04861111111111111 0.04861111111111111 0.041666666666666664 0.08333333333333333 0.05555555555555555 0.034722222222222224 0.05555555555555555 0.05555555555555555 0.027777777777777776 0.027777777777777776 0.11805555555555555 0.09027777777777778 0.041666666666666664 0.013888888888888888 0.027777777777777776
SIX11|12|1 0.03636363636363636 0.07272727272727272 0.045454545454545456 0.03636363636363636 0.02727272727272727 0.08181818181818182 0.03636363636363636 0.1 0.045454545454545456 0.045454545454545456 0.01818181818181818 0.07272727272727272 0.045454545454545456 0.06363636363636363 0.045454545454545456 0.07272727272727272 0.05454545454545454 0.045454545454545456 0.03636363636363636 0.01818181818181818
OSP24|13|1 0.10294117647058823 0.058823529411764705 0.051470588235294115 0.0661764705882353 0.022058823529411766 0.07352941176470588 0.007352941176470588 0.029411764705882353 0.04411764705882353 0.08823529411764706 0.007352941176470588 0.058823529411764705 0.0661764705882353 0.08088235294117647 0.058823529411764705 0.0661764705882353 0.029411764705882353 0.0661764705882353 0.0 0.022058823529411766
AVRa9|14|1 0.058823529411764705 0.029411764705882353 0.0392156862745098 0.049019607843137254 0.0196078431372549 0.09803921568627451 0.0392156862745098 0.0784313725490196 0.0392156862745098 0.06862745098039216 0.00980392156862745 0.06862745098039216 0.049019607843137254 0.029411764705882353 0.029411764705882353 0.12745098039215685 0.029411764705882353 0.058823529411764705 0.0196078431372549 0.058823529411764705
SCR108|15|1 0.12871287128712872 0.04455445544554455 0.0297029702970297 0.0297029702970297 0.054455445544554455 0.0594059405940594 0.01485148514851485 0.01485148514851485 0.09405940594059406 0.07920792079207921 0.01485148514851485 0.06930693069306931 0.0297029702970297 0.04950495049504951 0.0297029702970297 0.06435643564356436 0.07920792079207921 0.07920792079207921 0.019801980198019802 0.01485148514851485
PITG22926|16|1 0.07575757575757576 0.005050505050505051 0.025252525252525252 0.050505050505050504 0.03535353535353535 0.06060606060606061 0.025252525252525252 0.020202020202020204 0.09595959595959595 0.12121212121212122 0.030303030303030304 0.03535353535353535 0.030303030303030304 0.050505050505050504 0.0707070707070707 0.08080808080808081 0.09595959595959595 0.045454545454545456 0.020202020202020204 0.025252525252525252
AVRa7|17|1 0.09821428571428571 0.017857142857142856 0.05357142857142857 0.08035714285714286 0.05357142857142857 0.0625 0.026785714285714284 0.044642857142857144 0.026785714285714284 0.09821428571428571 0.026785714285714284 0.017857142857142856 0.07142857142857142 0.026785714285714284 0.07142857142857142 0.08928571428571429 0.044642857142857144 0.026785714285714284 0.008928571428571428 0.05357142857142857
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This source diff could not be displayed because it is too large. You can view the blob instead.
This diff is collapsed.
# alphatic aromatic postivecharge negativecharge uncharge
HUM3|1|1 0.4114583333333333 0.026041666666666668 0.10026041666666667 0.08723958333333333 0.375
AvrPm1a|2|1 0.3225806451612903 0.12903225806451613 0.18064516129032257 0.12903225806451613 0.23870967741935484
AVRa10|3|1 0.3220338983050847 0.1440677966101695 0.11864406779661017 0.1440677966101695 0.2711864406779661
SIX10|4|1 0.38926174496644295 0.11409395973154363 0.10738255033557047 0.0738255033557047 0.31543624161073824
HvEC016|5|1 0.4666666666666667 0.08444444444444445 0.057777777777777775 0.04 0.3511111111111111
Six13|6|1 0.3037542662116041 0.09897610921501707 0.13993174061433447 0.13310580204778158 0.3242320819112628
Cce1|7|1 0.3488372093023256 0.08527131782945736 0.13178294573643412 0.10852713178294573 0.32558139534883723
SIX9|8|1 0.3333333333333333 0.14035087719298245 0.15789473684210525 0.08771929824561403 0.2807017543859649
SIX12|9|1 0.3925233644859813 0.06542056074766354 0.09345794392523364 0.04672897196261682 0.40186915887850466
Six14|10|1 0.375 0.056818181818181816 0.11363636363636363 0.045454545454545456 0.4090909090909091
AvrSr27|11|1 0.2638888888888889 0.08333333333333333 0.1597222222222222 0.041666666666666664 0.4513888888888889
SIX11|12|1 0.32727272727272727 0.08181818181818182 0.12727272727272726 0.08181818181818182 0.38181818181818183
OSP24|13|1 0.36764705882352944 0.04411764705882353 0.11029411764705882 0.11764705882352941 0.3602941176470588
AVRa9|14|1 0.37254901960784315 0.09803921568627451 0.10784313725490197 0.08823529411764706 0.3333333333333333
SCR108|15|1 0.37623762376237624 0.0891089108910891 0.13861386138613863 0.0594059405940594 0.33663366336633666
PITG22926|16|1 0.35353535353535354 0.08080808080808081 0.1919191919191919 0.07575757575757576 0.29797979797979796
AVRa7|17|1 0.35714285714285715 0.11607142857142858 0.125 0.13392857142857142 0.26785714285714285
# alphaticr.alphaticr alphaticr.aromatic alphaticr.postivecharger alphaticr.negativecharger alphaticr.uncharger aromatic.alphaticr aromatic.aromatic aromatic.postivecharger aromatic.negativecharger aromatic.uncharger postivecharger.alphaticr postivecharger.aromatic postivecharger.postivecharger postivecharger.negativecharger postivecharger.uncharger negativecharger.alphaticr negativecharger.aromatic negativecharger.postivecharger negativecharger.negativecharger negativecharger.uncharger uncharger.alphaticr uncharger.aromatic uncharger.postivecharger uncharger.negativecharger uncharger.uncharger
HUM3|1|1 0.17209908735332463 0.005215123859191656 0.028683181225554105 0.041720990873533245 0.16427640156453716 0.00651890482398957 0.0 0.0 0.011734028683181226 0.007822685788787484 0.01955671447196871 0.002607561929595828 0.027379400260756193 0.00651890482398957 0.04432855280312908 0.028683181225554105 0.009126466753585397 0.01694915254237288 0.00651890482398957 0.02607561929595828 0.18383311603650587 0.009126466753585397 0.027379400260756193 0.020860495436766623 0.13298565840938723
AvrPm1a|2|1 0.09090909090909091 0.05194805194805195 0.08441558441558442 0.025974025974025976 0.07142857142857142 0.045454545454545456 0.006493506493506494 0.025974025974025976 0.025974025974025976 0.025974025974025976 0.08441558441558442 0.01948051948051948 0.012987012987012988 0.012987012987012988 0.05194805194805195 0.05194805194805195 0.012987012987012988 0.012987012987012988 0.025974025974025976 0.025974025974025976 0.045454545454545456 0.03896103896103896 0.045454545454545456 0.03896103896103896 0.06493506493506493
AVRa10|3|1 0.10256410256410256 0.042735042735042736 0.03418803418803419 0.05128205128205128 0.09401709401709402 0.02564102564102564 0.008547008547008548 0.017094017094017096 0.042735042735042736 0.05128205128205128 0.02564102564102564 0.042735042735042736 0.008547008547008548 0.008547008547008548 0.02564102564102564 0.06837606837606838 0.03418803418803419 0.0 0.008547008547008548 0.03418803418803419 0.09401709401709402 0.017094017094017096 0.05982905982905983 0.03418803418803419 0.06837606837606838
SIX10|4|1 0.12162162162162163 0.06756756756756757 0.02027027027027027 0.02027027027027027 0.16216216216216217 0.04054054054054054 0.006756756756756757 0.013513513513513514 0.006756756756756757 0.0472972972972973 0.0472972972972973 0.006756756756756757 0.013513513513513514 0.013513513513513514 0.02027027027027027 0.033783783783783786 0.006756756756756757 0.006756756756756757 0.006756756756756757 0.02027027027027027 0.14189189189189189 0.02702702702702703 0.05405405405405406 0.02702702702702703 0.06756756756756757
HvEC016|5|1 0.21428571428571427 0.022321428571428572 0.026785714285714284 0.022321428571428572 0.17857142857142858 0.03571428571428571 0.017857142857142856 0.0 0.004464285714285714 0.026785714285714284 0.026785714285714284 0.0 0.0 0.004464285714285714 0.026785714285714284 0.017857142857142856 0.004464285714285714 0.004464285714285714 0.0 0.013392857142857142 0.16964285714285715 0.04017857142857143 0.026785714285714284 0.008928571428571428 0.10714285714285714
Six13|6|1 0.07534246575342465 0.023972602739726026 0.04452054794520548 0.03767123287671233 0.1232876712328767 0.03424657534246575 0.003424657534246575 0.0136986301369863 0.00684931506849315 0.0410958904109589 0.0410958904109589 0.0273972602739726 0.017123287671232876 0.00684931506849315 0.04794520547945205 0.0547945205479452 0.00684931506849315 0.02054794520547945 0.0273972602739726 0.023972602739726026 0.0958904109589041 0.03767123287671233 0.04452054794520548 0.0547945205479452 0.08904109589041095
Cce1|7|1 0.1171875 0.0234375 0.0546875 0.0390625 0.1171875 0.0390625 0.0078125 0.0078125 0.0 0.03125 0.0546875 0.0 0.03125 0.0078125 0.03125 0.015625 0.0390625 0.015625 0.0078125 0.03125 0.1171875 0.015625 0.0234375 0.0546875 0.1171875
SIX9|8|1 0.1504424778761062 0.02654867256637168 0.04424778761061947 0.02654867256637168 0.08849557522123894 0.02654867256637168 0.017699115044247787 0.035398230088495575 0.017699115044247787 0.04424778761061947 0.04424778761061947 0.035398230088495575 0.017699115044247787 0.008849557522123894 0.04424778761061947 0.04424778761061947 0.008849557522123894 0.008849557522123894 0.0 0.02654867256637168 0.061946902654867256 0.05309734513274336 0.05309734513274336 0.035398230088495575 0.07964601769911504
SIX12|9|1 0.1509433962264151 0.03773584905660377 0.02830188679245283 0.009433962264150943 0.16981132075471697 0.018867924528301886 0.009433962264150943 0.009433962264150943 0.009433962264150943 0.018867924528301886 0.02830188679245283 0.0 0.009433962264150943 0.0 0.05660377358490566 0.018867924528301886 0.009433962264150943 0.0 0.0 0.018867924528301886 0.1792452830188679 0.009433962264150943 0.04716981132075472 0.02830188679245283 0.1320754716981132
Six14|10|1 0.16091954022988506 0.022988505747126436 0.011494252873563218 0.0 0.1839080459770115 0.04597701149425287 0.0 0.011494252873563218 0.0 0.0 0.034482758620689655 0.011494252873563218 0.0 0.022988505747126436 0.04597701149425287 0.022988505747126436 0.011494252873563218 0.0 0.0 0.011494252873563218 0.10344827586206896 0.011494252873563218 0.09195402298850575 0.022988505747126436 0.1724137931034483
AvrSr27|11|1 0.13986013986013987 0.013986013986013986 0.02097902097902098 0.0 0.09090909090909091 0.02097902097902098 0.0 0.006993006993006993 0.013986013986013986 0.03496503496503497 0.02097902097902098 0.03496503496503497 0.04895104895104895 0.0 0.055944055944055944 0.0 0.0 0.006993006993006993 0.006993006993006993 0.027972027972027972 0.07692307692307693 0.03496503496503497 0.07692307692307693 0.02097902097902098 0.24475524475524477
SIX11|12|1 0.13761467889908258 0.01834862385321101 0.027522935779816515 0.03669724770642202 0.10091743119266056 0.009174311926605505 0.009174311926605505 0.0 0.009174311926605505 0.05504587155963303 0.03669724770642202 0.009174311926605505 0.027522935779816515 0.01834862385321101 0.03669724770642202 0.01834862385321101 0.01834862385321101 0.009174311926605505 0.0 0.03669724770642202 0.11926605504587157 0.027522935779816515 0.06422018348623854 0.01834862385321101 0.1559633027522936
OSP24|13|1 0.16296296296296298 0.014814814814814815 0.037037037037037035 0.02962962962962963 0.11851851851851852 0.022222222222222223 0.0 0.014814814814814815 0.007407407407407408 0.0 0.037037037037037035 0.007407407407407408 0.014814814814814815 0.0 0.05185185185185185 0.044444444444444446 0.0 0.0 0.05185185185185185 0.022222222222222223 0.0962962962962963 0.022222222222222223 0.044444444444444446 0.02962962962962963 0.17037037037037037
AVRa9|14|1 0.10891089108910891 0.0297029702970297 0.0594059405940594 0.039603960396039604 0.13861386138613863 0.04950495049504951 0.009900990099009901 0.0 0.009900990099009901 0.0297029702970297 0.0297029702970297 0.009900990099009901 0.009900990099009901 0.009900990099009901 0.04950495049504951 0.039603960396039604 0.009900990099009901 0.0 0.0 0.039603960396039604 0.13861386138613863 0.039603960396039604 0.039603960396039604 0.0297029702970297 0.07920792079207921
SCR108|15|1 0.14925373134328357 0.024875621890547265 0.06965174129353234 0.009950248756218905 0.12437810945273632 0.024875621890547265 0.004975124378109453 0.009950248756218905 0.0 0.04477611940298507 0.04975124378109453 0.009950248756218905 0.029850746268656716 0.009950248756218905 0.03980099502487562 0.029850746268656716 0.014925373134328358 0.004975124378109453 0.0 0.009950248756218905 0.11940298507462686 0.03482587064676617 0.024875621890547265 0.03980099502487562 0.11940298507462686
PITG22926|16|1 0.12690355329949238 0.025380710659898477 0.06598984771573604 0.02030456852791878 0.116751269035533 0.04568527918781726 0.0 0.015228426395939087 0.005076142131979695 0.015228426395939087 0.06091370558375635 0.015228426395939087 0.03553299492385787 0.025380710659898477 0.05583756345177665 0.025380710659898477 0.0 0.015228426395939087 0.01015228426395939 0.025380710659898477 0.09137055837563451 0.04060913705583756 0.06091370558375635 0.015228426395939087 0.08629441624365482
AVRa7|17|1 0.11711711711711711 0.036036036036036036 0.04504504504504504 0.05405405405405406 0.10810810810810811 0.018018018018018018 0.018018018018018018 0.018018018018018018 0.02702702702702703 0.036036036036036036 0.036036036036036036 0.018018018018018018 0.036036036036036036 0.018018018018018018 0.018018018018018018 0.04504504504504504 0.018018018018018018 0.009009009009009009 0.009009009009009009 0.05405405405405406 0.13513513513513514 0.02702702702702703 0.018018018018018018 0.02702702702702703 0.05405405405405406
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
# Default ignored files
/shelf/
/workspace.xml
<component name="InspectionProjectProfileManager">
<settings>
<option name="USE_PROJECT_PROFILE" value="false" />
<version value="1.0" />
</settings>
</component>
\ No newline at end of file
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="ProjectRootManager" version="2" project-jdk-name="Python 3.8" project-jdk-type="Python SDK" />
</project>
\ No newline at end of file
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="ProjectModuleManager">
<modules>
<module fileurl="file://$PROJECT_DIR$/.idea/src.iml" filepath="$PROJECT_DIR$/.idea/src.iml" />
</modules>
</component>
</project>
\ No newline at end of file
<?xml version="1.0" encoding="UTF-8"?>
<module type="PYTHON_MODULE" version="4">
<component name="NewModuleRootManager">
<content url="file://$MODULE_DIR$" />
<orderEntry type="inheritedJdk" />
<orderEntry type="sourceFolder" forTests="false" />
</component>
</module>
\ No newline at end of file
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment